SPED MANAGEMENT USING VERTICAL DEFLECTION

Ransford McCourt, P.E., PTOE

January 25, 2023

AGENDA

Background of Recommended Practice

Major Content and Changes

Show me the data

Applications

Questions & Answers

ROAD MAP TO AN UPDATE

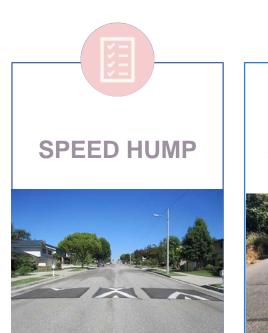
ITE RECOMMENDED PRACTICE

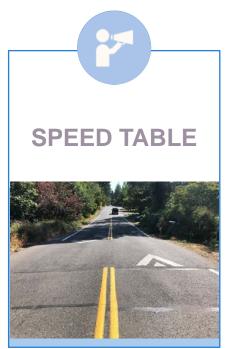
Issues:

- 2011 did not address range of vertical deflection options
- Cushions not well addressed
- Speed management is an emerging topic
- Most data was 2001 and older
- Questions about impacts
 - Task Force formed January 2021
 - Refresh completed June 2021
 - Open membership comment period Fall 2021
 - Panel review and staff production December 2022

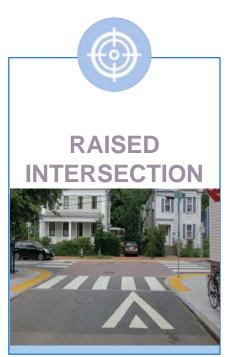
THINGS THAT STAYED THE SAME

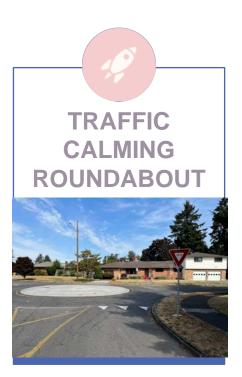
- Basic dimensions of humps and cushions
 - 3" high, 12-14' long
- Application vehicle speed ≤ 30 mph or 50 km/h
- Number of lanes 2 to 3
- Grade ≤ 8%
- Curve ≤ 200 foot radius (60 m)
- Not for intersection application
- Traffic control (signs, markings) following MUTCD
- Overall policy context council approval of program
- Process leaning heavily on public engagement
- Construction process and inspection

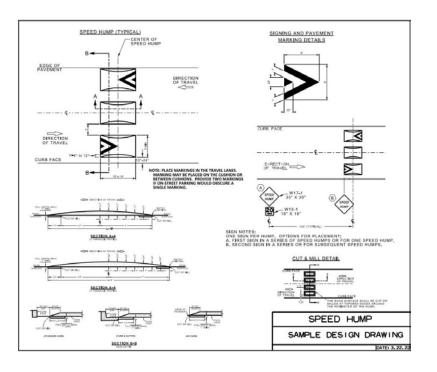



CHANGES IN THIS RECOMMENDED PRACTICE

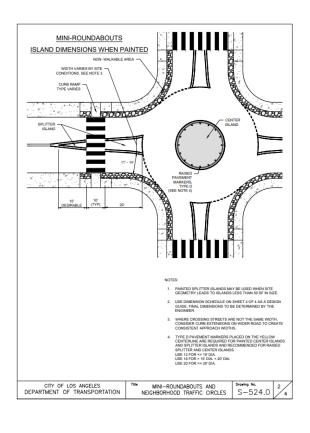
- More vertical deflection techniques
- Cushion design, not transverse for humps
- Inclusion of other measures as viable options
- Refined definition of "problem" based on empirical data
- Safety related speed metrics (5+ & 10+ mph over posted)
- Greater transparency in terms of data and impacts
- Review of legal cases involving vertical deflection
- Impact data related to property values, noise and emissions
- Definition on data collection 2 mph speed bins




SUITE OF VERTICAL DEFLECTION



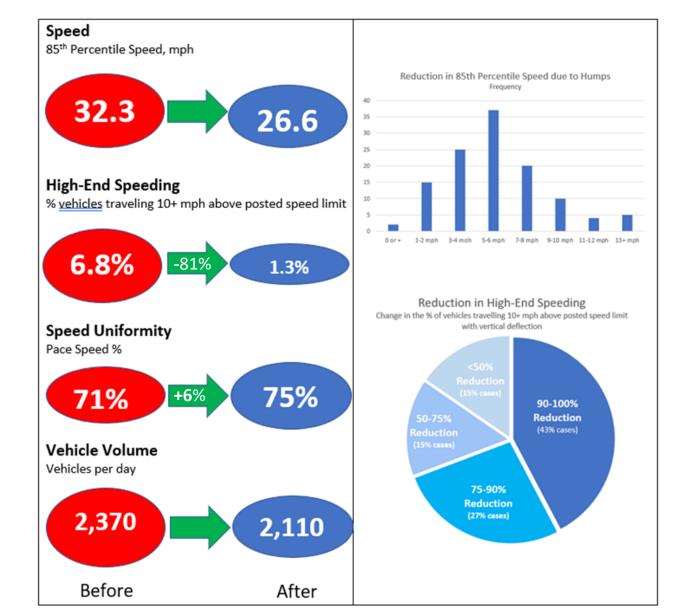
Other
Measures
Discussed:


- Dips
- Higher Speed Raised Safety Platforms (New Zealand/Australia
- Vehicle Speed Feedback Signs

PROVISION OF SAMPLES

SPEED HUMP

TRAFFIC CALMING ROUNDABOUT



SPEED MANAGEMENT

WHY SPEED REDUCTION?

RISK MANAGEMENT

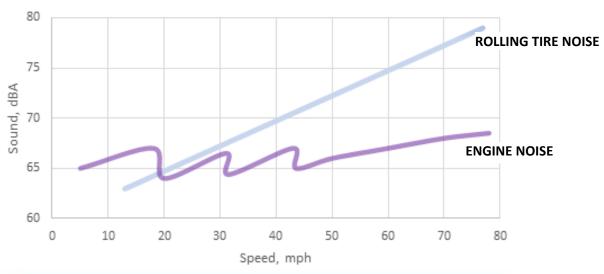
- 1. Bumps
- 2. Too high
- 3. Lack of traffic control devices
- 4. ≤30 mph posted speeds
- 5. Tripping

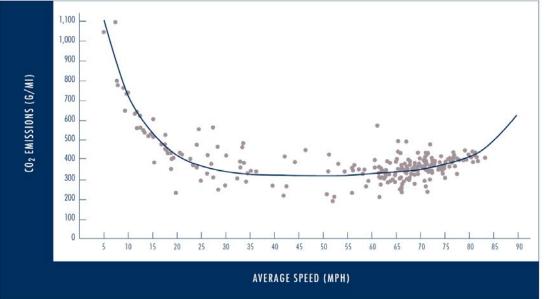
PROPERTY VALUES

ITE Journal, 2000

...it cannot be demonstrated that installing speed humps will affect property values in any predictable way.

Bretherton, Edwards, Miao, Gwinnett County, Georgia


Zillow Analysis - Beaverton, OR, LaHabra CA, Lafayette, LA; 2021


- Tracking nearly 100 houses on hump streets and 100 on control streets there appears to be no differences in value (\$/SF)
- If a difference does appear, it seems possible that values increase for lower valued neighborhoods

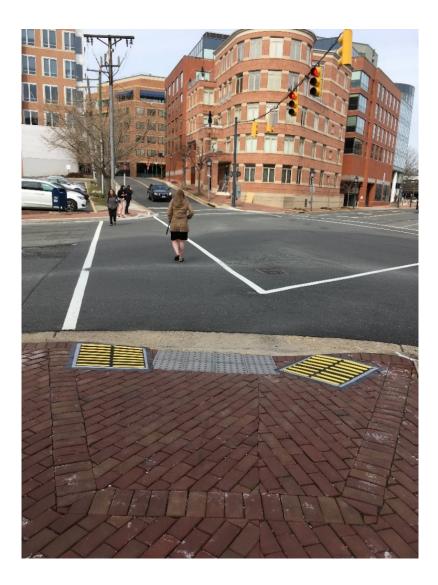
Speed Hump Guide Refresh Task Force

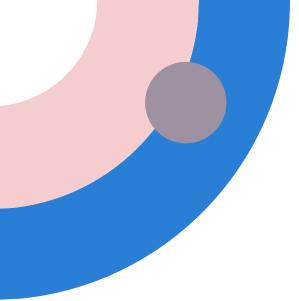
City	Average Year of Original Construction		Average		Average Square Footage	
			Zestimate		(sq. ft.)	
	Control	Hump	Control	Hump	Control	Hump
Beaverton, OR	1960	1971	\$639,538	\$626,572	2,250	2,276
La Habra, CA	1950	1959	\$698,680	\$734,073	1,305	1,368
Lafayette, LA	1948	1930	\$96,318	\$118,115	1,396	1,531
City	Average Lot Size (sq. ft.)		Average Number of Bedrooms		Average Number of Bathrooms	
	Control	Hump	Control	Hump	Control	Hump
Beaverton, OR	18,800	14,444	3.2	3.6	2.2	2.5
La Habra, CA	5,640	6,332	2.8	3.7	1.6	2.0
Lafayette, LA	7,180	10,431	2.4	2.3	1.0	1.0
City	School Ratings (Elementary/Middle/High)		Walks Score		Transit Score	
	Control	Hump	Control	Hump	Control	Hump
Beaverton, OR	5/4/3	5/7/3	58	61	56	59
La Habra,	4/4/8	4/4/8	74	68	31	31

NOISE/EMISSION

Source: Barth, Boriboonsoimsin, Traffic Congestion and Greenhouse Gases, University of California Access Magazine, Number 35, Fall 2009, University of California, Riverside, page 5.

Applications


WHAT DO THESE HAVE IN COMMON?


Speed

VERTICAL DEFLECTION APPLICATIONS

- Consider neighborhood needs, concerns and issues
 - Volume impacts to other streets can be important
- Posted speed \leq 30 mph
- Local and neighborhood streets
 - If on Collector and Arterials 2 to 3 lane applications
- Spacing 250 to 500 feet
 - Consider traffic signals, stop signs, dips, roundabouts, other traffic calming measures in a system not one isolated treatment
- Humps, Tables, Raised Pedestrian Crossings <u>non-intersection</u>
- Raised Pedestrian Crossings, Raised Intersections, Traffic Calming Roundabouts – <u>intersections</u>
- Consider vulnerable users particularly at raised intersections
- Most effective for conditions where % of vehicles traveling 10+ mph is greater than 10 percent, pace is below 70%, and volume is 2,000 vpd or greater, street widths > 32 feet and limited onstreet parking

WHAT ARE THE COMMON MISTAKES

POOR DESIGN

HIGH SPEEDS

BIG STREETS

POOR CONSTRUCTION

NOT SYSTEMATIC

- Too tall
- Lack of traffic control
- Bumps
- Too close to driveways

Being above the posted 30 mph – this application is not well vetted

Primarily for two and three lane (up to 3 lane one-way)

Lack of inspection rigor and templates

Consider spacing of all measures and traffic control together or thinking one hump alone will do the job. "500-foot guide" Most importantly not involving the public.

NOT ONE SIZE FITS ALL

What 50 years of application evolved minimizes impacts:

- Noise
- Emissions
- Speed up to slow down,
- Wear/tear
- Risk management
- Property values
- First responder opposition

Jurisdictions that have adopted the International Fire Code should be aware that they need to seek the approval of the fire code official when installing traffic calming measures (2021)

ARTERIALS

- Common users:
 - First responders, transit, freight, motorcycles
- Large number of lanes and volume
 - Conflicts with lane changes
- Better solutions exist
 - Roundabouts
 - Medians
 - Feedback Signs
 - Signal coordination
 - Narrower lanes (10-11 foot)
 - Sidewalks and landscaping

QUESTIONS

Randy McCourt

503.randy.mccourt@gmail.com

Portland, OR

