An Alternative Methodology to Obtain Quantity Takeoff by Using Linear Regression Techniques
By Yong Shi, CCP

Introduction
Quantity takeoff (QTO) is one of the most important and time-consuming activities in the construction process. Undoubtedly, each estimate should highly depend on the accurate quantity takeoff. Conventionally, QTO is performed by quantity surveyors who determine the necessary quantities based on 2D drawings manually from paper drawings or using quantity surveying software. The tasks are known as very time consuming, laborious and are always prone to errors.

Different from the traditional methods based on 2D drawings, this paper will investigate an alternative methodology to obtain QTO by using the linear regression model. Statistical methodology is widely used in the cost estimate [1-3]. In this study, the Partition was selected as the dependent variable to be investigated as a function of the independent variable GFA by using linear regression techniques.

Data Description
The data base was collected from a condo project recently developed in Honolulu with its net GFA around 600,000 SF, with 8 floors and total 207 residential units. Instead of the traditional time-consuming method, a statistical methodology applied on the collection of QTO would be investigated in this paper.

The relationship between partition footprint length and GFA would be studied by using the regression techniques. Besides the total data base, a small portion of the data base was conducted by the regression model and then the regression results were inversely used to predict the total quantity. Obviously, it would be time-saving through this way comparing to that of the traditional method. Hence, two groups of samples, 10% and 20% of the total data base corresponding to 20 and 40 sets of data respectively, were randomly selected to be analyzed by the regression techniques. Table 1 displays the descriptive statistics on the 20, 40 samples and total data base.

Correlation
The scatter plot of Partition versus GFA for 20, 40 and total samples is thus shown in Figure 1 (a), (b) and (c), respectively. Obviously, it is indicated that a strong linear relationship would exist between Partition and GFA from the scatter plots. Table 2 shows their correlation coefficient (ρ). It is found that all correlation coefficients are 0.98 which it is very close to "1" indicating that there is significant positive linear relationship between Partition and GFA. Based on the correlation results, a linear regression model would be undertaken for 20, 40 and total samples.

Regression Model
The high correlation observed in Figure 1 strongly indicates that a linear regression would be an appropriate way of modelling Partition versus GFA.

A simple linear model is developed by taking Partition as the dependent variable (Y) and GFA as the independent variable (X) shown in Eq. (1), Y=β0+βX, considering the fact that Partition quantity (Y) should be zero when GFA (X) goes to zero. Table 3 shows the results of the linear regression analysis.

Model Diagnosis

Goodness of Fit. Table 3 shows R²=0.99 which means that 99% of the total variation in the dependent variable Y (Partition) is explained by the independent variable X (GFA) through the linear model Eq. (1). Therefore, it is concluded that Partition quantity could be predicted by the linear Eq. (1) with GFA as the input variable.

Test of Hypotheses. The output of the regression analysis in Excel produces t-statistic and p-value as displayed in Table 3. The p-value

Table 1: Descriptive statistics on 20, 40 and total samples.

<table>
<thead>
<tr>
<th></th>
<th>20 samples</th>
<th>40 samples</th>
<th>Total data (207 sets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>201</td>
<td>205</td>
<td>228</td>
</tr>
<tr>
<td>Median</td>
<td>200</td>
<td>178</td>
<td>207</td>
</tr>
<tr>
<td>Minimum</td>
<td>83</td>
<td>86</td>
<td>83</td>
</tr>
<tr>
<td>Maximum</td>
<td>348</td>
<td>410</td>
<td>651</td>
</tr>
<tr>
<td>Total</td>
<td>4,022</td>
<td>8,219</td>
<td>47,193</td>
</tr>
<tr>
<td>GFA (SF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>1,841</td>
<td>1,900</td>
<td>2,100</td>
</tr>
<tr>
<td>Median</td>
<td>1,810</td>
<td>1,761</td>
<td>1,947</td>
</tr>
<tr>
<td>Minimum</td>
<td>850</td>
<td>850</td>
<td>850</td>
</tr>
<tr>
<td>Maximum</td>
<td>3,286</td>
<td>4,254</td>
<td>6,211</td>
</tr>
<tr>
<td>Total</td>
<td>36,810</td>
<td>76,009</td>
<td>434,677</td>
</tr>
</tbody>
</table>

Table 2: Correlation coefficient of 20, 40 and total samples.

<table>
<thead>
<tr>
<th></th>
<th>Correlation Coefficient (ρ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Samples</td>
<td>0.98</td>
</tr>
<tr>
<td>40 Samples</td>
<td>0.98</td>
</tr>
<tr>
<td>Total Samples (207 Samples)</td>
<td>0.98</td>
</tr>
</tbody>
</table>
3D metal printer arrives to College of Engineering through partnership with Pearl Harbor Naval Shipyard

Thanks to a partnership with the Pearl Harbor Naval Shipyard & Intermediate Maintenance Facility (PHNS), students and faculty in the College of Engineering at the University of Hawai‘i at Mānoa will soon have a state-of-the-art 3D metal printer at their fingertips. The College of Engineering and PHNS will jointly utilize the Markforged Metal X 3D printer, valued at roughly $250,000 and purchased by Naval Sea Systems Command, for educational and research purposes.

In 2018, the two parties entered into a 3-year Education Partnership Agreement, allowing both organizations to collaborate on projects of mutual interest. The partnership kicked off with the development of a student internship course, currently run as one section of Mechanical Engineering (ME) 491, which allows students to build real-world engineering experience by tackling real projects alongside professionals at PHNS as mentors. During the development of the course, the idea of obtaining the printer for everyone’s benefit was floated, and after continued discussion, a plan was put in place to make it a reality.

Once in operation, the machine will be able to service a variety of needs for both organizations. PHNS personnel will be able to manufacture replacement parts, especially those that have long lead times or are obsolete, such as metal flanges, valves, brackets, and filter housings. Engineering students and faculty will be able to fabricate custom small metal parts for research and components for senior design projects.

“This new 3D metal printer will greatly expand our current collective 3D printing capabilities and design space that will create more opportunities for the College that currently do not exist,” said Dr. Marvin Young, Adjunct Professor in the Mechanical Engineering department.

For PHNS, the collaboration will allow their personnel to develop new technologies for greater efficiencies at the facility, all while accessing a significant knowledge base through interaction with engineering faculty and students.

The printer will be housed at UH in the Engineering Machine Shop and will be fully operational at the beginning of the Fall 2020 semester.
Local Engineer Receives Prestigious Honor

The National Society of Professional Engineers (NSPE) has named Michael Silva, P.E., L.S., from Kula, Maui, Hawaii, to its 2020 class of Fellow members. The Fellow membership grade honors those active NSPE members who have demonstrated exemplary and devoted service to their profession, their Society, and their community. Since its establishment in the year 2000, slightly more than one percent of all NSPE members have advanced to this highest volunteer membership rank.

“Being recognized for your service to the engineering profession, your successful career, and your involvement in NSPE is a great honor and no small feat, especially when that honor is bestowed by your peers,” said Amy Barrett, P.E., F.NSPE, the chairman of the executive committee of the Council of Fellows. “We are proud of this year’s Fellows and their accomplishments and look forward to more great contributions from them in the future.”

Among his peers, Silva is renowned for a dedication to engineering excellence that promotes the conservation and responsible use of soil and water resources. He is often requested to lead public and private sector commissions and service organizations aimed at planning for future infrastructure for Maui County. Currently, he is chair of both the Maui County Public Works Commission and the Central Maui Soil and Water Conservation District. He also serves as president of the Hawaii Association of Conservation Districts while also representing Maui on the association board.

Silva is equally involved in Society activities, having been president of both the Hawaii Society of Professional Engineers and its Maui Chapter and continuing to serve on their executive committees. He promotes engineering scholarships at the local level and helps facilitate MATHCOUNTS competition. Since 2004, he has volunteered in the Maui Chapter’s Career Shadowing Program and Math Matters Program. At the national level, Silva serves as Secretary/Treasurer for NSPE Western and Pacific Region (WPR), serves as HSPE’s representative to the NSPE WPR, and represents Hawaii in the NSPE House of Delegates. He also served on the NSPE Candidate Screening Committee and has been an active participant at NSPE Professional Engineer Conferences nationwide.

Through his employment at Fukumoto Engineering Inc., Silva has distinguished himself as both vice president and project manager, having responsible charge of a number of key engineering and land surveying projects in Maui, Hawaii. These include state and county sewerage and water system improvements, roadway systems, public transportation facilities, and private resort site and utility improvements. Within his community, Silva serves on the board of directors for the J. Walter Cameron Community Center and the Maui Fair Alliance. In 2012, he was accepted into the Ka Ipu Kukui Fellow Program in recognition of his young leadership.

The National Society of Professional Engineers is a member-centric, nimble, future-focused, and responsive organization, serving as the recognized voice and advocate of licensed Professional Engineers. Through education, licensure advocacy, leadership training, multidisciplinary networking, and outreach, NSPE enhances the image of its members and their ability to ethically and professionally practice engineering. Founded in 1934, NSPE serves more than 23,000 members and the public through 52 state and territorial societies and over 400 chapters. For more information, please visit www.nspe.org.
An Alternative Methodology, continued from Page 1

shown as “approximately zero” indicates the very strong evidence against null hypothesis and in favor of alternative hypothesis. In other words, the independent variable (GFA) is a statistically significant predictor of the dependent variable (Partition).

Model Prediction and Discussion

Based on the discussion above, the linear regression model shown in Eq. (1) has been statistically verified to describe the relationship between Partition and GFA. Therefore, we would use this equation to predict the total Partition quantity with GFA as the input variable and then compare the predicted value with the “true” value measured manually.

Table 4 shows the predicted value calculated by Eq. (1) with three different linear parameters obtained by the regression analysis on 20, 40 and total samples. Total GFA is the sum of GFA for all units while the corresponding total Partition quantity is the sum of all unit Partition quantity. In this study, the measured total Partition quantity is considered as “true” value in order to compare to the predicted value. Therefore, each of regression parameter is used to calculate the total Partition by Eq. (1). Three fitted linear equations given in Table 4 for three sets of data are used to calculate the Partition value with the total GFA as the input variable.

The error and relative error between the predicted and “true” value are thus deducted as shown in Table 4. It is observed that the relative errors on the total Partition value predicted by that of 20, 40 and total samples are 1.26%, 0.87% and 0.57%, respectively.

Furthermore, the next challenge is to evaluate the error of the final cost estimate caused by the error of the predicted takeoff quantity. Mathematically, it would be simply calculated by multiplying the predicted quantity error with the percentage of that item cost over the total cost. Taking this condo project as an example, the Partition cost would take around 5% of the total project cost. Therefore, 1.26% relative error of the predicted value under the 20-sample case would lead to around 0.063% relative error of the total estimate cost.

Conclusion

This paper presents an alternative methodology to obtain the quantity takeoff (QTO) by using the regression techniques which different from the conventional taking-off methods. In order to illustrate this methodology, this paper investigated the relationship between Partition quantity and Gross Floor Area (GFA) on a typical condo project by applying the linear regression model. Only small portion of the total data was randomly collected to be conducted by the linear regression analysis and the resulted linear coefficients were inversely used to predict the total Partition quantity with the total GFA as the input variable. The errors between the predicted values with that of “true” values obtained from the manually taking-off method were discussed. Based on the results, it could be concluded that this methodology would provide an alternative choice for quantity surveyors to perform QTO with less time-consuming comparing to that of conventional methods, and also conduct the quick QTO-checking in order to avoid human errors.

References:
2019-2020 ASCE Hawaii Section Officers
President: Jason Kage, P.E.
email: jkage@ascehawaii.org
President-Elect: Dayna Nemoto-Shima, P.E.
email: dnemoto@ascehawaii.org
Vice President: Clifford Lum, P.E.
email: clum@ascehawaii.org
Treasurer: Reyn Hashiro, P.E.
email: rhashiro@ascehawaii.org
Secretary: Eric Tomishima, P.E.
email: etomishima@ascehawaii.org
Immediate Past Pres: Eric Arakawa, P.E.
email: earakawa@ascehawaii.org
YMF President: Kapiolani Street, P.E.
email: kstreet@ascehawaiiymf.org

EXECUTIVE COMMITTEE MEETING
Last held: July 10, 2020
Next meeting: August 6, 2020

ASCE HAWAII SECTION DINNER MEETING
The continued health and safety of our membership is our top priority and we will continue to monitor the COVID-19 pandemic. Future ASCE Hawaii events, including our section dinner meetings, are still on hold. We will keep you informed via e-blasts and/or notices posted on our website at ascehawaii.org when they will be scheduled. Please continue to stay safe, watch out for each other, especially our kupuna, and continue to be vigilant about best health practices.

COMMITTEE POSITIONS
ASCE Hawaii is looking for volunteers to fill the following committee positions: One (1) Student Practitioner Advisor. If you are interested or have questions on any of these positions, please contact President Jason Kage, jkage@ascehawaii.org.

MEMBERSHIP
If you haven’t already done so, please renew your ASCE membership. You can renew your membership at www.asce.org.

ASCE JOB LISTINGS
The following job listings are currently posted on the ASCE Hawaii Section website:
- AECOM (Civil Engineer II)
- Booz Allen Hamilton (Senior Civil Engineer and Wastewater Specialist)
- City and County of Honolulu (Civil Engineer III, IV, V, Mechanical Engineer V, & Electrical Engineer V)
- G70 (Civil Designer, Civil Engineer, Civil Project Manager, Construction Manager)
- HDR (Senior Civil Engineers, Senior Federal Project Manager, Project Manager – Transportation Group, & Water/Wastewater Engineer)
- Hirata & Associates (Geotechnical/Civil Engineer – Project Engineer)
- Jacobs (Civil Engineer)
- Kennedy-Jenks Consultants (Project Manager, Staff Engineer for Honolulu Office and Staff Engineer for Hawaii Office)
- Nagamine Okawa Engineers Inc. (Structural Engineer)
- PGH Wong (Change and Claims Manager, Change and Claims Specialist, Civil/Building Inspector, Office Engineer, & Scheduler)
- Stantec (Construction Compliance Monitor/Inspector, Document Configuration Specialist, Deputy Resident Engineer, Lead Engineer (Assistant RE), Lead Office Engineer, & Office Engineer)
- SSFM (Civil Engineer V, Structural Engineer IV)
- US Army Corp of Engineers (USACE) (Interdisciplinary Project Manager, GS-12)

For further information, please visit http://www.ascehawaii.org/job-listings.html.

2020 OUTSTANDING CIVIL ENGINEERING ACHIEVEMENT AWARDS
Nominations for the 2020 Outstanding Civil Engineering Achievement Awards are due Friday August 7.

Award Categories:
- Best Large Project
- Best Medium Project
- Best Small Project
- Best “Green” Sustainable/Envision Project
- Best Transportation Project
- Best Water/Wastewater/Environmental Project
- Best Building and Structural Systems Project
- Best Studies and Research Project
- Best Special Project
- Best Humanitarian Project
- Best International Project

For further information, please visit http://www.ascehawaii.org/ocea-home.html.

YMF General Meeting
The next YMF general meeting is TBD. Please be sure to check out our website and social media channels for the most updated information. If you are interested in attending and learning more about the various professional, social and service opportunities available through YMF, please contact YMF at ymf.hawaii@gmail.com.
Professional Directory